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ARTICLE INFO ABSTRACT
Keywords: Objective: We hypothesized that directing multimodal sensory stimulation to one side of the brain,
Retained primitive reflexes particularly targeting theoretically underdeveloped networks, would facilitate the integration of
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Coaniti hemispheric connectivities, and these changes would be observed alongside improvements in
ognition

N " . cognitive function in individuals with autism spectrum disorder (ASD).

Hemisphere specific training N A ) . .

Bottom-up processing Method: Transcutaneous Electrical Nerve Stimulation (T.E.N.S.) was applied as the primary so-

Maturational delay matosensory modality to stimulate the right hemisphere, along with retained primitive reflex

Top-down processing stimulation. Neuropsychological testing included behavioral scales, academic achievement
measures, and IQ subtest scores. In this study, we sought evidence to identify objective deficits
that correlated with retained primitive reflexes and cognitive function. We then compared the
existence of retained primitive reflexes and cognitive function in each participant before and after
hemispheric stimulation, as well as in comparison to a control group receiving sham treatment.
Results: Support was found for the observation that reduction of retained primitive reflexes
following unilateral T.E.N.S. stimulation was associated with concurrent improvements in
cognitive performance in ASD. While these findings suggest parallel changes, the present study
cannot determine whether reflex integration mediates the cognitive gains or whether both are
influenced by broader changes in neural connectivity.
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Introduction
Primitive reflexes: What are they and what is the controversy?

During the second six months of life, primitive-reflex activity is inhibited due to the maturation of the central nervous system
(Schott & Rossor, 2003). It has been found that delayed motor skill development and delayed suppression of primordial reflexes are
related (Capute et al., 1982; Fiorentino, 2014, Melillo & Leisman, 2009; 2010; 2022a, 2022b; 2023). When RPRs are also asym-
metrically present, there is strong support for the hypothesis that this is associated with maturational delays that, in turn, can be
associated with deficits in hemispheric network communication, which we refer to as a functional disconnection (Gerber et al., 2010;
Fiorentino, 2014; Leisman & Melillo, 2022a; 2023).

Primary reflexes, also known as primitive reflexes, are automatic responses originating from the central nervous system (CNS) that
are typically present in infants but not in healthy adults. These reflexes are crucial for survival and development during infancy and are
normally inhibited as the brain matures.

The neuroanatomical pathways associated with primary reflexes can be classified based on the level of the CNS at which they are
controlled. They include: a) cortical reflexes: these involve higher brain functions and include equilibrium reactions. b) Midbrain
reflexes including kinetic labyrinthine reflexes, body righting reflexes, and optical righting reflexes. c) Brainstem reflexes that include
tonic neck reflexes (such as the asymmetric tonic neck reflex and symmetric tonic neck reflex), static labyrinthine reflexes, and
supporting reactions. d) Spinal reflexes including flexor withdrawal, extensor thrust, crossed extension, plantar grasp, and palmar
grasp reflexes (Ref).

Each of these reflexes serves specific functions and is integrated as the infant’s motor development progresses. For example, the
asymmetric tonic neck reflex (ATNR) helps develop hand-eye coordination, while the symmetric tonic neck reflex (STNR) is crucial for
developing crawling patterns and postural control. Schematic of the anatomical pathways involved in primary reflex manifestation
may be found in Fig. 1.

Primitive or infantile reflexes are sensory/motor reflexes that are present at birth. It has been known for some time that most of
these reflexes are present in utero and that one of their functions is to help the child “birth itself” (Bartlett et al., 1997; Melillo &
Leisman, 2010, Leisman et al., 2022a). By that, we mean that the main function of primitive reflexes is to allow the infant to move and
react to its environment in the absence of a developed mature motor cortex at birth (Melillo & Leisman, 2010; Leisman & Melillo,
2022a; 2023). The infant needs to be able to move, feed, protect and orient him or herself, to engage their senses and muscles, and
create sensory and motor feedback to activate genes that will build the brain from the bottom up. The control of these reflexes is
thought to arise from multiple regions of the brainstem (Gieysztor et al., 2018; Leisman & Melillo 2023b; Melillo et al., 2023b). The
lower reflexes in the medulla are thought to be active first followed by reflex control associated with the pons and mesencephalon
(Vargiami & Zafeiriou, 2019).

It is important to differentiate RPRs from primitive reflexes which reappear in adults. RPRs are adaptive reactions occurring in the
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Fig. 1. Schematic of anatomical Pathways of primitive reflexes.
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neonatal life, which become integrated as the brain matures. Their reappearance in adulthood returned primitive reflexes usually
indicates impairment of cortico-subcortical networks, associated with normal aging as well as with adult-onset neurological
compromise. Returned primitive reflexes may be viewed as a release of brainstem activity due to the loss of repressive input from
higher levels of the central nervous system. They are often referred to collectively as "frontal release" signs, primitive or archaic re-
flexes, or atavistic reflexes (Scott & Schoenberg, 2010). They are seen in disorders that affect the frontal lobes, such as dementias,
metabolic encephalopathies, closed head trauma, and hydrocephalus (Malloy et al., 1998; Barotono and Press, 2022), but in adults, the
presence of frontal release signs reflect deficits in cognitive and executive function (Barotono and Press, 2023; Damasceno et al., 2005)
found that in dementia, the highest frontal release sign scores tended to be associated with the lowest cognitive scores and with
diminished regional cerebral blood flow in frontal regions. Thus, both the presence of multiple frontal release signs and their scores
could be useful predictors of diffuse cerebral dysfunction. In persistent vegetative and minimally conscious states, it is common to find
reappearance of primitive reflexes, such as grimacing, startle reflex, etc. (von Wild 2012). The presence of RPRs beyond infancy, on the
other hand, may be taken as a sign related to neurological immaturity (Melillo & Leisman, 2010; Vargiami & Zafeiriou, 2019).

As higher levels of the brainstem become active, reflexes controlled by its lower areas become inactive or inhibited (Vargiami &
Zafeiriou, 2019). Ultimately, this progression continues into the brain and neocortex. It is then thought that ultimately, the devel-
opment of the frontal lobes leads to top-down control and inhibition of primitive reflexes (Starosta et al., 2016).

The controversy (Gieysztor et al., 2018) pertaining to RPRs is not whether they exist or not. Primitive reflex testing has been
included as part of a normal pediatric neurology examination for decades. They are a well-accepted part of the evaluation of effective
child development. The controversy surrounds the inhibition of these reflexes. Most pediatriaians assume that primitive reflexes are all
completely inhibited by the end of the first year (Vargiami & Zafeiriou, 2019). The only time it is thought not to happen is if there is a
brain injury at birth such as cerebral palsy (Chinello et al., 2018). However, there have been a significant number of studies that have
indicated that in a certain percentage of the population, primitive reflexes are not inhibited in the first year of life and persist into
middle childhood (Marschik et al., 2017) and even adulthood (Hogan & Ebly, 1995). It has also been documented that in children,
adolescents, and adults with RPRs, a neurobehavioral disorder or learning disability coexists (Gieysztor et al., 2018; Chinello et al.,
2018). Individuals with ADHD, ASD, Tourette’s syndrome, dyslexia, and other neurobehavioral disorders almost always demonstrate
RPRs that are thought to relate to maturational delay in the brain and nervous system (Melillo & Leisman, 2010; Gordon, 2013;
Leisman et al. 2023; Melillo et al., 2022, 2023a, 2023b).

Cozolino (2017) noted that an individual with early functional neurological impairments or children with subtle developmental
delays may still fall within the “normal” range for the majority of tests, yet actually be showing the beginnings of what may later

Table 1
General characteristics of the neurotypical control group (Group A).
Characteristic Categories No. %
Gender Male 25 83.3
Female 5 16.7
Apgar score 9*9 23 76.7
8*9 6 20.0
7*9 1 3.3
Gestational age less than 37 3 10.0
37-42 27 90.0
more than 42 - -
Birth Natural 18 60.0
Cesarean 12 40.0
Birth Weight (GRAMS) less than 2500 1 3.33
2500-4000 26 86.7
more than 4000 3 10.0
IQ (Intelligence quotient) 140 and more 2 6.7
120-139 8 26.6
110-119 2 6.7
90-109 14 46.6
less than 90 4 13.4
Overall Health Normal 30 100
Abnormal - -
Grade Level Pre School - -
Primary School 12 40.0
Secondary School 7 23.3
High School 1 3.4
Technical 4 13.3
University 6 20.0
Sidedness R 24 80.0
L 6 20.0
Age (years) 5-15 20 66.7
16-25 6 20.0
26-35 4 13.3
Hemis. Domin. R 6 20.0
L 24 80.0
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develop into a pathological state in adulthood such as in the case of schizophrenia (Cozzolino, 2017). Perhaps then these signs can be
viewed as early markers for developmental delay or for neurological dysfunction.

Cognitive deficits and RPRs

The relationship between cognitive deficits and RPRs has also been controversial (Koziol et al., 2016). Some authors (Damasceno
et al., 2005; Koziol et al., 2016) consider these reflexes as predictive of diffuse cerebral dysfunction, since these signs are significantly
correlated with cognitive deficits in a wide age-range of individuals as determined by the Halstead-Reitan neuropsychological test
battery (Koziol et al., 2016) and the Woodcock-Johnson Tests of Cognitive Abilities (McWhirter et al., 2022).

If primary reflexes are retained beyond the normal developmental period, they have the potential to disrupt maturational processes
and reduce the brain’s ability to transmit, process, and integrate sensory information effectively (Blythe, 2011; Sigafoos et al., 2021).
In other words, the persistence of primary reflexes beyond the normal timespan (12 months) interferes with subsequent development
and is indicative of neurological impairment (McPhillips & Sheehy, 2004) or of maturational delay (Konicarova & Bob, 2013). The
findings indicate that independently of the participants’ age, the persistence of the primitive reflexes was significantly associated with
infant’s performance in both the interaction with objects (i.e., actions) and with people (i.e., communicative gestures), meaning that
low scores on RPR assessment, correspond to elevated persistence of these reflexes, and correlate with low scores in motor repertoire
irrespective of the infants’ age. These findings are consistent with previous studies, revealing that the persistence of the asymmetrical
tonic neck reflex, another primitive reflex, is associated with reduced fine motor ability (e.g., fingering, shaking, rotating and
transferring objects across the midline) (McPhillips et al., 2000), and gross motor abilities (e.g., rolling, creeping, crawling, riding a
bicycle and catching or kicking a ball) (McPhillips & Sheehy, 2004).

We theorize that the presence of RPRs can be explained by delayed or “arrested” neurological development of cortical and cortical-
subcortical connectivities that should affect efficient intercommunication between processing of many motor and cognitive behaviors
(for a more comprehensive overview of the theoretical basis for this contention, cf. Leisman et al., 2022a; 2023b). Therefore, this study
aims to demonstrate whether hemisphere-specific electrical stimulation interventional protocols to integrate RPRs in ASD individuals
can lead to a corresponding improvement of cognitive function.

Methods and methodology
Participants

The characteristics of the participants are reported in Table 1. Sixty male and female participants were recruited from the Institute
for Neurology and Neurosurgery in Havana, Cuba, and tested and treated in the Clinical Electrophysiology laboratory. Demographic
data of the participants were recorded and included age, gender, Apgar score, birth weight, gestational age, and whether the birth was
natural or a Caesarian section. Also recorded were the 1Q, overall health of the participants, grade level, and sidedness. Three age
groups included 10 ASD participants each (5-10; 11-19; 25-35 years), reflecting different normative stages of development into
adulthood. Additional selection criteria may be found below. The participants included 50 males and 10 females whose mean age was
15.8 (S.D. 7.21). The groups’ characteristics can be found in a data depository at (https://www.researchgate.net/publication/
372345066)

Inclusion criteria

Each participant in both the control and experimental groups was blindly clinically examined by two child neurologists and
diagnosed with ASD, based on DSM-V criteria (American Psychiatric Association, 2022) Each of the ASD participants possessed a
classical autistic triad of impairments in social interaction, communication, and imagination (Zappella, 2012; Zeidan et al., 2022;
Hodges et al., 2020; Bitsika, & Sharpley, 2023) with relatively intact verbal functions and with WISC-IV(Spanish/WAIS) 1.Q.s over 85
(Charman et al., 2011a; 2011b).

The following conditions were required for inclusion in the control group: a history of uneventful prenatal, perinatal, and neonatal
periods; no disorders of consciousness; no history of central or peripheral nervous system disease; head injury with cerebral symptoms;
convulsive episodes; paroxysmal; headache; enuresis or encopresis after the fourth birthday; tics; stuttering; pavor-nocturnus; or any
psychiatric, behavioral, or drug-related disorder. Depending on age, school-aged participants demonstrated normal academic
achievement (American Psychiatric Association, 2022; Silver & Rapin, 2012). Control group inclusion criteria were based on: a history
of uneventful prenatal, perinatal, and neonatal periods; no disorders of consciousness; no history of central or peripheral nervous
system disease, head injury with or without cerebral symptoms, convulsive episodes, paroxysmal, headache, enuresis, or encopresis
after the fourth birthday, tics, stuttering, pavor-nocturnus, or any psychiatric, behavioral or drug-related disorder. Control group
participants were excluded if any spike-wave or paroxysmal activity was present in the EEG.

Exclusion criteria

None of the participants demonstrated a history of epileptic symptoms and neurologic abnormalities other than those directly
related to autism, and no history of cerebral palsy or Traumatic Brain Injury (TBI) or brain surgery. None of the participants
demonstrated any genetic disorder, metabolic illness, vascular disorder, or history of cancer, and they could not be breastfeeding or
pregnant.

None of the control participants demonstrated a history of cerebral palsy, TBI or brain surgery. Participants in the control group did
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not demonstrate any genetic or vascular disorder, metabolic illness, or history of cancer and could not be breastfeeding or pregnant.
Participants were free of drug treatment. Control group participants showed no manifestations of any RPRs. Depending on age, school-
aged participants who demonstrated normal academic achievement (American Psychiatric Association, 2022; Silver & Rapin, 2012)
were excluded from the control group as well as individuals demonstrating any spike-wave activity in the EEG.

Informed consent and institutional approval

The Institute of Neurology and Neurosurgery Ethics Committee and the IRB for the University of Haifa research approved the
proposed research projects (INN2020-41). The participants’ relatives or persons responsible provided informed consent to participate
in the study.

Characteristics of participants

Table 1 represents participant data that is purely descriptive and represents the control group (Group A) consisting of 30 in-
dividuals whose inclusion/exclusion selection criteria are more fully described in sections 2.1.1 and 2.2.2. above (group A). In this
table where the neurotypical control participants are represented, the initial variables are similar, however with IQ, level of schooling,
there is a tendency towards a higher IQ, higher levels of schooling, and the other variables. However, the differences validate sig-
nificant differences between the ASD and Neurotypical groups regardless of the criteria employed to define each group.

Table 2 represents the particularization of the characteristics described for the entire study sample in participants with ASD (Group
B). Male participants predominate, Apgar count of 9*9, full-term birth, natural birth, and normal weight at birth are all well within
normal limits. However, when focusing on variables such as IQ, level of education, low IQ, low level of education predominates,
reflecting a functional disorder. When comparing Tables 1 and 2 these differences are then confirmed.

In Tables 3 and 4 descriptive differences are noted between the neurotypical control group and ASD experimental groups. The
tables are illustrative of group differences noting that in ASD individuals, language is acquired later than in the neurotypical in-
dividuals, and motor and toileting milestones are reached later in Group B on average than in Group A participants.

Procedure

Reflex testing and stimulation
All individuals had the following reflexes examined clinically and included both symmetric and asymmetric: Asymmetric Tonic

Table 2
General characteristics of participants with ASD (Group B).
Characteristic Categories No %
Gender Male 25 83.4
Female 5 16.6
Apgar score 9*9 19 63.3
8*9 9 30.0
7*9 2 6.7
Gestational age less than 37 4 13.3
37-42 26 86.7
more than 42 - -
Birth Natural 24 80.0
Cesarean 6 20.0
Birth Weight (GRAMS) less than 2500 1 3.3
2500-4000 23 76.7
more than 4000 6 20.0
IQ (Intelligence quotient) 140 and more -
120-139 - -
110-119 2 6.7
90-109 10 33.3
less than 90 18 60.0
Overall Health Normal 30 100.0
Abnormal - -
Grade Level Pre School 1 3.4
Primary School 15 50.0
Secondary School 8 26.6
High School 4 13.3
Technical 2 6.7
University - -
Sidedness R 25 83.3
L 5 16.7
Age (years) 5-15 20 66.7
16-25 7 23.3
26-35 3 10.0
Hemis. Domin. R 5 16.7
L 25 83.3
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Table 3
Language, motor, and toilet milestones in neurotypical control participants.
Milestone Age No. %
Language Milestones 10-16 months 25 83.4
17-24 months 4 13.3
25-36 months 1 3.3

37-47 months
48 and more months - -
Motor Milestones 10-14 months 28 93.4

15-18 months 1 3.3
More than 18 months 1 3.3

Toilet Milestones 12-18 months 16 53.4
19-24 months 7 23.3
2 years 3 10.0
3-4 years 3 10.0
5-6 years -
7 years 1 3.3

Table 4
Language, motor, and toilet milestones in participants with ASD.

Milestone Age No. %

Language Milestones 10-16 months 2 6.7
17-24 months 6 20.0
25-36 months 7 23.3
37-47 months 12 40.0
48 and more months 3 10.0

Motor Milestones 10-14 months 6 20.0
15-18 months 14 46.7
More than 18 months 10 33.3

Toilet Milestones 12-18 months 3 10.0
19-24 months 2 6.7
2 years 1 3.3
3-4 years 2 6.7

5-6 years 22 73.3
7 years - -

Neck Reflex (ATNF), Symmetric Tonic Neck Reflex (STNR), Spinal Galant, Babinski, Palmer Grasp, Rooting and Tonic Labyrinthine
Neck Reflex (TNR). Abnormality was defined as an individual exhibiting two or greater RPRs. Reflexes were graded on a scale of 0-4
based on clinical judgment (0 =0 fully integrated; 1 =25 %; retained; 2 = 50 % retained; 3 =75 %; 4 =100 % completely retained
when Tested by 3 examiners. The testing procedures are described more fully in Table 1 and a detailed procedural guide may be found
in Melillo et al. (2023/BMJ).

Cognitive and behavioral testing

The Spanish editions of the following standardized tests were performed: The Wechsler Individualized Achievement Testing-III
(WIAT-III) (Vaughan-Jensen et al., 2009), Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) (Clinton, 2005),
ADI-R (Autism Diagnostic Interview-Revised (Lebersfeld et al. 2021)).

Hearing and vestibular function
All children in Cuba with ASD are routinely tested by brainstem auditory evoked potentials to rule out auditory impairment. Cranial
nerve function was also included as part of the evaluation protocol as was the case in the patients evaluated in this report.
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RPR-reduction stimulation procedures
The reflex elicitation techniques and intervention techniques used for all four subjects are shown in the Appendix in Table Al.

Results

Fig. 2 and 3 report the results of the neuropsychological testing before and after the 12-week treatment program that included RPR
integration. The raw data set may be found here. All of the statistical analytical data can be found in the appended Tables A1 and A2.

Examinations for the presence of RPRs were performed both before and after the intervention program. A Z-test for comparison of
proportions was performed to determine if the difference in proportions or percentages in terms of the RPRs that disappeared after the
intervention was statistically significant. Most of the ASD participants demonstrated a reduction in observed RPRs, and this
improvement was statistically significant (p < .05). For significant Wilcoxon tests, effect sizes (r) ranged from 0.32 to 0.45, indicating
small-to-moderate effects. Bootstrapped 95 % confidence intervals for these effect sizes did not cross zero, supporting the robustness of
the observed changes (see Table A2).

As the data were non-parametric, in this study, pre-/post changes in retained primitive reflex (RPR) scores and cognitive perfor-
mance, and their associations. Significant improvements in cognitive performance were noted on all measures in the ASD individuals
between pre- and post-testing among those who received the intervention. Effect sizes for pre/post changes on WISC/WAIS subtests
ranged from medium (d ~ 0.45) to large (d =~ 0.80), with 95 % confidence intervals confirming that nearly all effects were reliable
(Table A3). A Bonferroni correction for multiple comparisons, providing greater conservatism of estimate, rendered only one reflex test
below significance. Bootstrapped 95 % confidence intervals for Cohen’s d estimates did not cross zero, confirming the reliability of
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Fig. 3. (A) Pre-reflex integration WISC/WAIS IQ and sub-test scores. (B) Post-reflex integration WISC/WAIS IQ and sub-test scores.
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these effects (Table A3). Because this was a pre/post observational design without formal mediation testing, we do not infer that RPR
integration mediates cognitive change; we report associations and within-group pre/post differences.

In addition to the pre- and post-intervention performance analyses presented in Table A3, correlation analyses were conducted to
examine associations between retained primitive reflex scores and cognitive outcomes. These results are presented in
Appendix Tables A4 and A5. Table A4 displays pre-intervention correlations, and Table A5 displays post-intervention correlations,
each reporting exact correlation coefficients (r), corresponding significance levels (p), and 95 % confidence intervals calculated using
Fisher’s r-to-z method.

Discussion

Primitive reflexes are involuntary motor responses present at birth, originating from the brainstem, and are essential for an infant’s
survival. As the nervous system matures, these reflexes should integrate into higher brain functions, allowing for controlled and
purposeful movement. When these reflexes remain unintegrated, they can disrupt neurological harmony, affecting everything from
motor skills to cognitive processing and emotional regulation. For example, a retained Moro reflex, responsible for an infant’s startle
response, can cause chronic stress and heightened reactivity to stimuli 2. Similarly, a retained fear paralysis reflex can impair logical
thinking and appropriate responses, often resulting in behaviors like screaming or hitting in stressful situations.

Children with ASD demonstrate significant delays in reflex pattern development, which is typically linked to their muscle tone
deregulation and hyperactive protective behavior. ASD is a disorder characterized, among other characteristics, by immature and
poorly functioning reflex motor patterns. Lack of reflex integration in infancy or within the first two years of life negatively affects
neurodevelopment and can interfere with the development of conscious motor-cognitive skills.

We observed significant pre-/post changes in reflex patterns following hemisphere-based T.E.N.S. stimulation. These changes are
consistent with improvements in sensory—motor link function, although causal attributions cannot be made from the present design.

In this study, reductions in retained primitive reflexes occurred alongside significant improvements in cognitive performance after

T™MS
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100+ ms
Cortex:
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M1/SMA preparation
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Somatosensory cortex | Auditory
cortex
Cerebellum Thalamus
OVIRE =
4
Somatosensory Vestibular Auditory
stimulus stimulus stimulus

Spinal MNs Fluctuating excitability of cell populations

with motor output determined by threshold

Fig. 4. | A hypothesized model for the brain circuits subserving the expression of long latency startle and stretch reflexes. Transcortical contri-
butions to long latency stretch reflexes are enabled by a pathway that incorporates the primary somatosensory and motor cortices before descending
to muscles through the corticospinal tract (white arrows). Stimulation of somatosensory, vestibular, or auditory systems results in the transfer of
these signals to the cortex and the pontomedullary reticular formation (blue arrows), each of which has thresholds for activating output cells.
Inhibition of the primary motor cortex (or areas involved in movement preparation) by application of suprathreshold TMS (orange arrows) results in
almost synchronous inhibition of cells within the spinal cord and PMRF, although for different times. Spinal motoneurons appear to be inhibited for
~50 ms after TMS. Output cells inside the motor cortex, however, can be blocked for up to 200 ms (Strick, 1983). During periods of cortical in-
hibition, activation of the corticospinal tract is not possible, although a combination of cortico-reticulospinal input (black arrows) and sufficiently
large sensory input can still activate reticulospinal tract cells (red arrow) after any TMS-induced inhibition of PMRF ceases. The likelihood of PMRF
output (startle) is controlled in this model by the magnitude of the sensory input and the immediate excitability of PMRF cells. A comparable
situation is expected to arise at the cortical level (see Alibiglou and MacKinnon, 2012). Task, posture, and stability-dependent modulation of stretch
reflex reactions likely entail input from the cerebellum to both the main motor cortex and reticular formation (gray arrows). In this figure, tha-
lamocortical projections reach regions involved for voluntary motor preparation, although projections straight to M1 may also play an essential role
in modulating quick responses. M1, Primary motor cortex; SMA, supplementary motor region; PMRF, pontomedullary reticular formation; ISF,
intersensory facilitation; MN, motoneuron (adapted from Shemmell, J., 2015).
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hemisphere-specific stimulation described in Appendix A. These findings are consistent with the view that both reflex integration and
cognitive function are influenced by changes in hemispheric connectivity. However, our design does not allow us to determine whether
the disappearance of reflexes directly mediates cognitive improvement, or whether both are parallel outcomes of the same inter-
vention. Accordingly, we interpret the RPR—cognition relationship as correlational, not causal or mediational, within this dataset. By
addressing these foundational neurological processes, reductions in retained reflexes were observed in parallel with improved learning
and cognitive function (Melillo et al., 2023a; 2023b). The pathways involved in some primitive reflexes that were integrated can be
found in Fig. 4. Future work using mediation analysis or longitudinal modeling will be required to determine whether reductions in
RPRs are causally responsible for cognitive gains.

RPRs have the potential to impede maturation processes and lessen the brain’s capacity to interpret sensory data if they persist after
the typical developmental period. Alternatively, the continuation of primary reflexes after the typical period (12 months postpartum)
may imply interference with future development and be a sign of neurological malfunction.

The persistence of the primitive reflexes is significantly correlated with an infant’s performance in the interaction with objects (i.e.,
actions) as well as with people (i.e., communicative gestures) regardless of the age of the participants, which means that low scores in
the assessment of the primitive reflexes, which correspond to high persistence of the reflexes, correlate with low scores in motor
repertoire regardless of the age of the infants (Konicarova & Bob, 2013; Gieysztor et al., 2018; Melillo et al., 2020; 2022; 2023a; 2023b;
Leisman et al., 2022a; 2022b; 2023). This result is in line with earlier research, which showed that the persistence of the Asymmetrical
Tonic Neck reflex, a different primitive reflex, impairs both fine and gross motor skills. These skills include rolling, creeping, crawling,
riding a bicycle, and catching or kicking a ball (McPhillips, 2000; McPhillips & Sheehey, 2004)

Reductions in motor activity, spatial exploration, experience-dependent plasticity, RPRs, and delayed postural reflexes are all signs
of cortical networks’ overall immaturity in early life (Vogel et al., 2010; Sathyanesan et al., 2019). If RPRs developed in an asymmetric
way, a more precise imbalance in maturity would be anticipated. We would anticipate asymmetric brain and nervous system
development and maturation if there were unilateral RPRs and unilateral delays of postural reflexes, as this would change muscle tone
or produce asymmetry of tone, which would change sensory and muscle feedback, which is believed to be the primary factors
influencing brain development (Longman et al., 2017).

According to several investigations, brain connectivities in autistic adults and children varies. Children with autism may exhibit
particularly strong connections in several brain networks, whereas autistic adults typically display weaker connections in a number of
the same networks (Uddin et al., 2013; Rane et al., 2015; Dajani & Uddin, 2016; Cai et al., 2021).

The "unevenness" of cognitive ability is one of the most fascinating characteristics of individuals with ASD. We have suggested that
understanding the condition’s basis as a functional disconnection syndrome, like what is seen in sleep (Daneault et al., 2021),
minimally conscious states (Porcaro et al., 2022), or as reported in patients with dyslexia (Habib, 2021), will help explain the variety of
behavioral effects noted in ASD and nearly all neurobehavioral disorders. (Melillo & Leisman, 2009; 2010; Wang et al., 2020; Siffredi
et al., 2021). This point of view has long been known (Leisman & Zenhausern, 1982). Widespread cortical networks may exhibit
functional asymmetry, which could lead to decreased temporal coherence in some networks and increased temporal coherence in other
functional networks (Gansel, 2022; Leisman et al., 2022a; Kumar et al., 2021).

Childhood and adulthood’s retention of infantile reflexes has been linked to brain damage and several developmental issues.
(Swapna et al., 2020; Sigafoos et al., 2021; Mohamed et al., 2023). Additionally, they have been reported in childhood functional
neurological disorders that are not linked to any particular neurological illness or trauma (McWhirter et al., 2022; Pecuch et al., 2021).

Normally, after the first few months of life, the feedback produced by movement caused by primitive reflexes leads to the inhibition
of these reflexes and the activation of more complex postural reflexes, resulting in a more complex interaction with the environment.
This in turn is associated with a greater amount of sensory feedback, which activates genes that allow for the creation of integration
and coordination between different cortical networks (Leisman et al., 2022a). More areas can be stimulated simultaneously as these
cortical networks grow more integrated and coupled. This increases the speed of their interactions and enhances their synchronization
(Melillo et al., 2023a; 2023b).

If the child’s brain will not continue to expand and develop at a normal rate, the emergence of its more mature functions will be
delayed as a consequence. This can happen if cortical maturity and motor coordination are delayed, which may occur because of the
abnormal persistence of primitive reflexes (Zafeiriou, 2024; Sigafoos et al., 2021; Leisman et al., 2022a). With the anomalous,
asymmetric persistence of primitive reflexes, which affects how the brain’s hemispheres develop at distinct rates and times, an
imbalance in maturation can result, associated with one hemisphere maturing normally while the other is delayed. Significant im-
balances in synchronization and temporal coherence may be associated with this, making it harder for the two hemispheres’ cortical
networks to link in space and time. A functional disconnection syndrome, which can manifest with a variety of symptoms, may also be
associated. We offer clinical support here and elsewhere (Melillo et al., 2023a; 2023b) for the notion that ASD can be, in part,
associated with maturational delays as reflected in RPRs and imbalances and not necessarily a result of actual structural damage or
pathology. ASD individuals are amenable to remediation (Melillo et al., 2020; 2022). We also support the notion that the presence of
RPRs and the developmental milestones that might be delayed or absent as a result may be the earliest markers of developmentally
delayed children in general and those with ASD. As a result, we offer support for the notion that hemispheric-specific interventions can
significantly reduce the presence of RPRs and will consequently have measurable and significant positive effects on both motor and
cognitive function.

Limitations

The study has several limitations. First, the relationship between reductions in RPRs and improvements in cognition should be
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interpreted as correlational rather than causal; the present data cannot establish mediation. Although concurrent changes were
observed, whether reflex reduction drives cognitive improvements or whether both reflect broader hemispheric changes remains
unresolved. Second, the RPR testing scale was narrow (0-4), and reflex scoring relied on clinical judgment, which may introduce
variability. Third, while we now report effect sizes and confidence intervals alongside p-values, the modest sample size and use of non-
parametric testing may still limit robustness. Finally, generalizability is restricted to ASD individuals without major comorbid
neurological disorders. Future work should incorporate mediation analysis, objective reflex testing (e.g., EMG), and a broader range of
cognitive measures beyond IQ. RPRs appear to be present at all ages, even though this is not a topic often covered in the literature.
Treatment was associated with diminished RPRs and contemporaneous improvements in cognitive performance (Machado et al., 2015;
Melillo et al., 2023b). These concurrent changes may reflect alterations in functional connectivity; however, the present data do not
establish mediation or causation. After the first year of life, neurodevelopmentalists might wish to consider the examination of primary
reflexes post-infancy, given their potential associations with broader cognitive and developmental outcomes.
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Appendix A

Table Al
The table lists procedures for reflex testing and intervention more fully explained in Appendix 1 (from Melillo et al., 2023a)

Reflex Repetitions

Reflex Method of Reflex Stimulation Procedures Frequency of
Evoking Reflex Repetition
Tonic Labyrinthine Laid on the back with legs flexed up and arms Extend head & roll backwards x 10 x 3/day
(TLR) wrapped around legs; head on ground to start. The
head flexed, and body rocked forward as far as
possible.
Asymmetric Tonic Lying on stomach, head turned to one side, armand  Lifts head turning it x 10 x 3/day
Neck Reflex left are extended straight on side of head turn, arm  simultaneously flexing extended arm & leg &
(ATNR) and leg on opposite side flexed opposing arm and leg extended
Then return head to original position and arms and
legs back to original position
Symmetric Tonic On hands and knees, eyes open, bend head back Patient on knees while patient chin & forehead held  x 10 x 3/day

Reflex
(STNR)
Babinski

Rooting

Snout
Spinal Galant

and look upwards then bend head down to look
through the knees
Roll Tennis Ball on bottom outside of foot.

Suck on straw or suck & blow lips.

Lying on the back, arms at side & legs together.
Open arms & legs together slowly as far as possible
bringing hands together over head and legs spread

then head moved up & down rapidly through full
range

Stroke upwards with hard end of paintbrush laterally
& at bottom of foot.

Brushstroke from cheek to corner of mouth then
across both lips x 5 then from chin toward corner of
mouth and across lips x 5 x’s; repeat on contralateral
face.

Press on filtrum (space between nose & upper lip).
Stroke side of spine downwards with hard side of a
brush little more lateral 10 times both sides

10

20 Left foot, 10 Right: x
3/day
30 s to 1 min x 3/day

x 10 x 3/day
x 10 x 3/day

(continued on next page)
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Reflex Repetitions

Reflex Method of Reflex Stimulation Procedures Frequency of
Evoking Reflex Repetition
apart simultaneously. Slowly return to original
position 10 repetitions

Moro Sitting on chair, start from fetal position, hands Lying face up, hold head & bend it forward quickly ~ x 10 x 3/day

Palmer Grasp

Sensory Stimulation
Vestibular Ocular
Reflex (VOR)

Post-rotational
nystagmus testing
(PRNG)
(Spinning)

Optokinetic reflex

Light stimulation
Combined sensory
stimulation

Tactile stimulation

Transcutaneous
electrical nerve
stimulation
(TENS)

curled in fist & head bent forward. Right wrist over
left wrist and right ankle over left (crisscrossed).
Open all the way bending head back with arms and

moving head downwards approx. 1-2 in. 10 reps.
Additionally clap hands loudly behind the
individuals head to evoke startle.

legs stretched then return to fetal position crossing
left wrist over right & left ankle over right repeat &
to original position for 10 repetitions

Squeeze tennis ball with hand Use brush or vibration to draw X on hand with the
hard side of the brush.

VOR exercises to the left (head turn): While fixating on object (e.g., pencil, finger, or
looking in mirror turn head left-ward as far as
possible while keeping eyes fixed on object.

Spinning Spin fast clockwise for 10 rotations of 2 sec/rotation
and slow spin counterclockwise @ 6 sec/rotation
repeated until nystagmus evoked

Optodrum Use animals or black & white stripes to right & down
only generated on mobile phone

Penlight Shine light in corner of left eye

MetroTimer Flashing light @ 54 beats/min in corner of left eye
only for 1 min
After one month sound & light together 30 sec after
light & sound separately for 30 sec.

Brushing Brush on left arm & legs for right hemisphere

dominant or vice versa for left dominant

Wireless pads placed on left upper back between
shoulder blade & spine. TENS unit set to mode 6.
Starting at 10 min x 2/day. Increase intensity until
individual felt light tingling ensuring absence of
muscle contraction.

Initially administered separately from pulsed light
stimulation. At 5th wk. (when both administered for
30 min) then combined for 30 min. simultaneously,
increasing by 10 min. every other week up to

60 min. for both simultaneously.

Pulsed electrodermal stimulation &
Pulsed light stimulation

x 20 left, x 10 right x 3/
day

x 10 x2/day

10 rotations each
direction
x 3/day

30 sec x 3/day.

x 10 for 3 sec -x 3/day
x 3 times/day

x10 times on each limb
x 3/day

x 2/day (Every other
week added 10 min
until 60 min) x 2/day

Table A2

Reflex testing pre vs. post primitive reflex integration. Wilcoxon non-parametric tests
statistical significance (n = 60). Wilcoxon non-parametric statistical tests were used as the
data is not normally distributed. Codes for reflexes are described in the left column (a=pre-
reflex integration and b=post-reflex integration)

.Reflex Code Primitve Reflex Significance
al ATNR-ASYMMT-L 0.004

a2 ATNR-ASYMMT-R 0.004

a3 STNR-ASYMMT-L 0.059

a4 STNR-ASYMMT-R 0.059

a5 SPINAL GALLANT-AYMMT-L 0.004

a6 SPINAL GALLANT-AYMMT-R 0.006

a7 PALMER-ASYMMT-L 0.014

a8 PALMER-ASYMMT-R 0.009

a9 BABINSKI ASYMMT-L 0.034

alo BABINSKI ASYMMT-R 0.010

all ROOTING-ASYMMT-L 0.317 (NS)
al2 ROOTING-ASYMMT-R 0.317 (NS)
al3 LABYRINT ASYMMT-L 0.102 (NS)
al4 LABYRINT ASYMMT-R 0.083 (NS)
al5 MORO-ASYMMT-L 0.102 (NS)
alé MORO-ASYMMT-R 0.180 (NS)
al7 ATNR-SYMMT-L 0.00001
al8 ATNR-SYMMT-R 0.0001

(continued on next page)
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Table A2 (continued)

.Reflex Code Primitve Reflex Significance
al9 STNR-SYMMET-L 0.002

a20 STNR-SYMMET-R 0.020

a2l SPINALGALLANT-SYMMET-L 0.0001
a22 SPINALGALLANT-SYMMET-R 0.059

a23 PALMER-SYMMET 0.059

a24 BABINSKI SYMMET 0.205 (NS)
a25 ROOTING SYMMET 0.002

a26 LABYRINT SYMMET-L 0.002

a27 LABYRINT SYMMET-R 0.006

a28 MORO-SYMMET 0.006

bl ATNR-ASYMMT-L 0.004

b2 ATNR-ASYMMT-R 0.004

b3 STNR-ASYMMT-L 0.059

b4 STNR-ASYMMT-R 0.059

b5 SPINAL GALLANT-AYMMT-L 0.004

b6 SPINAL GALLANT-AYMMT-R 0.006

b7 PALMER-ASYMMT-L 0.014

b8 PALMER-ASYMMT-R 0.009

b9 BABINSKI ASYMMT-L 0.034

b10 BABINSKI ASYMMT-R 0.010

b1l ROOTING-ASYMMT-L 0.317 (NS)
b12 ROOTING-ASYMMT-R 0.317 (NS)
b13 LABYRINT ASYMMT-L 0.102 (NS)
b14 LABYRINT ASYMMT-R 0.083 (NS)
b15 MORO-ASYMMT-L 0.102 (NS)
bl6 MORO-ASYMMT-R 0.180 (NS)
b17 ATNR-SYMMT-L 0.0001
b18 ATNR-SYMMT-R. 0.0001
b19 STNR-SYMMET-L 0.002

b20 STNR-SYMMET-R 0.020

b21 SPINALGALLANT-SYMMET-L 0.0001
b22 SPINALGALLANT-SYMMET-r 0.059

b23 PALMER-SYMMET 0.059

b24 BABINSKI SYMMET 0.205 (NS)
b25 ROOTING SYMMET 0.002

b26 LABYRINT SYMMET-L 0.002

b27 LABYRINT SYMMET-R 0.006

b28 MORO-SYMMET 0.006

Table A3
Raw WISC/WAIS test results and subtests scores (= pre-reflex integration and d = post-reflex integration). All results other than Block-Design
significantly changed between pre- and post-reflex integration (p < 0.001)

C1 Cc2 Cc3 C4 C5 C6 Cc7 D1 D2 D3 D4 D5 D6 D7
1Q Pic Block Matrix Info Simil. Digit 1Q Pic Block Matrix Info Similar  Digit
WISC/ Comp Des Reas Span WISC/  Comp Design Reason Span
WAIS WAIS

85 10 10 10 9 10 10 106 13 15 16 11 12 9
128 12 13 14 18 18 0 144 13 13 17 20 18 0
122 13 11 13 19 10 0 123 13 11 13 19 19 0
96 12 8 10 6 17 0 95 13 9 9 6 12 0
85 8 9 8 6 11 0 92 12 7 7 8 12 0
123 13 12 13 13 20 0 126 13 9 12 16 20 0
85 9 8 5 11 11 9 87 10 8 6 11 11 9
94 7 10 10 8 13 0 104 10 11 11 10 14 0
86 8 5 8 11 9 14 86 8 5 8 11 9 14
85 10 8 7 6 11 0 86 11 7 8 7 11 0
85 11 8 7 4 12 0 93 11 7 5 9 13 0
123 12 11 11 20 17 0 127 14 11 11 19 18 0
86 10 7 10 10 9 0 96 9 8 10 11 11 0
89 5 10 10 4 12 0 95 12 9 10 5 14 0
88 13 8 4 8 10 0 88 11 7 6 10 10 0
115 11 9 11 15 14 19 118 12 9 13 17 14 18
104 10 8 10 9 23 0 109 9 9 15 14 25 0
91 6 10 11 5 14 0 90 7 7 10 4 13 0
120 13 15 14 9 16 0 130 14 12 15 14 16 0
98 15 11 11 13 10 10 89 12 10 9 12 10 10

(continued on next page)
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Table A3 (continued)

Cc1 Cc2 C3 Cc4 C5 Cc6 Cc7 D1 D2 D3 D4 D5 D6 D7
134 16 10 12 19 19 16 140 16 11 16 19 19 18
85 10 10 6 5 11 0 85 11 9 6 7 11 0
111 12 17 9 12 14 0 124 13 17 12 14 17 0
96 8 11 12 9 14 0 97 8 11 12 10 14 0
96 8 10 8 8 13 0 118 14 12 13 11 13 0
142 14 13 14 17 20 0 145 14 13 15 18 20 0
85 10 10 6 8 10 0 88 11 8 7 7 12 0
100 11 10 11 8 14 0 119 12 10 15 12 19 0
90 8 10 11 6 13 0 102 9 10 10 10 14 0
129 12 9 13 17 19 19 132 12 9 13 17 19 19
85 10 8 6 8 11 0 85 10 8 6 8 11 0
95 8 9 11 8 12 0 102 8 11 12 10 12 0
95 10 8 8 11 14 12 110 12 9 11 14 16 18
127 12 10 14 15 20 0 138 13 12 15 17 20 0
84 6 9 9 9 17 0 106 11 11 11 11 16 0
81 8 9 7 11 12 7 102 13 11 10 11 14 16
128 9 14 15 11 17 0 125 10 13 14 10 18 0
91 15 11 9 12 12 9 91 15 11 9 12 12 9
88 12 8 7 7 12 0 95 10 9 6 7 13 0
102 9 10 12 13 12 0 109 10 11 12 15 15 0
90 10 9 8 8 13 0 99 13 9 8 9 15 0
96 9 10 11 7 13 0 107 10 10 13 10 14 0
89 12 10 9 12 10 10 98 15 11 11 13 10 9
90 10 9 9 11 6 16 91 10 9 9 11 8 14
112 13 11 13 8 16 0 109 13 11 13 10 16 0
91 9 6 8 14 11 9 115 112 10 11 17 14 19
83 9 7 9 7 10 0 88 10 9 9 8 10

108 12 10 10 14 16 14 127 15 11 11 19 18 19
86 7 8 8 6 15 0 123 11 14 16 9 19

85 10 10 6 13 8 7 86 10 10 7 13 8 7
93 8 11 13 10 10 0 95 9 11 13 10 11 0
95 12 12 8 7 14 0 96 12 12 8 8 14 0
111 10 10 12 14 16 19 112 12 8 16 15 18 19
93 9 8 10 9 10 12 94 9 8 10 9 11 12
82 10 6 8 12 12 10 93 12 10 9 13 13 10
87 10 10 9 12 9 10 87 10 8 9 11 12 10
88 6 12 11 5 11 0 93 6 12 13 6 12 0
90 11 10 10 8 10 0 95 11 10 11 10 11 0
87 10 10 8 7 10 0 95 10 11 10 7 13 0
88 11 10 6 4 11 0 88 9 9 9 4 13 0

Table A4

Correlation coefficients between retained primitive reflex (RPR) scores and individual WISC/WAIS subtest measures prior to reflex-integration
intervention in individuals with autism spectrum disorder (n = 60). The Variable column lists each primitive reflex assessed. The Measure column
lists the corresponding WISC/WAIS cognitive subtests examined. The r column presents Pearson correlation coefficients indicating the strength and
direction of association between reflex scores and cognitive performance, where positive values denote higher reflex retention associated with higher
test scores, and negative values denote inverse relationships. The p column reports significance levels, and 95 % CI (Lower/Upper) columns present
Fisher’s r-to-z transformed confidence limits for each correlation

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
ATNR-ASYMMT-L —.295* —0.295 0.050 —-0.511 —0.044
ATNR-ASYMMT-L —.295% —0.295 0.050 —0.511 —0.044
ATNR-ASYMMT-L 0.085 0.085 -0.173 0.332
ATNR-ASYMMT-L —0.199 —0.199 —0.431 0.058
ATNR-ASYMMT-L —.283* —0.283 0.050 —0.501 —0.031
ATNR-ASYMMT-L —-0.025 —0.025 -0.277 0.230
ATNR-ASYMMT-L —0.025 —0.025 -0.277 0.230
ATNR-ASYMMT-L —.356%* —0.356 0.010 —0.559 -0.112
ATNR-ASYMMT-L 0.161 0.161 —-0.097 0.399
ATNR-ASYMMT-R —.327%% -0.327 0.010 —-0.536 —0.080
ATNR-ASYMMT-R —.327%* -0.327 0.010 —0.536 —0.080
ATNR-ASYMMT-R 0.080 0.080 -0.178 0.327
ATNR-ASYMMT-R —.236* —0.236 0.050 —0.462 0.019
ATNR-ASYMMT-R —.299* —0.299 0.050 —-0.514 —0.049
ATNR-ASYMMT-R —0.044 —0.044 —0.295 0.212
ATNR-ASYMMT-R —0.044 —0.044 -0.295 0.212
ATNR-ASYMMT-R —.363%* —0.363 0.010 —0.565 -0.120

(continued on next page)
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Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
ATNR-ASYMMT-R 0.135 0.135 —0.123 0.376
STNR-ASYMMT-L —.221* —0.221 0.050 —0.450 0.035
STNR-ASYMMT-L —.221* —0.221 0.050 —0.450 0.035
STNR-ASYMMT-L —0.097 —0.097 —0.342 0.161
STNR-ASYMMT-L -0.171 -0.171 —0.407 0.087
STNR-ASYMMT-L —.251* —0.251 0.050 —0.475 0.003
STNR-ASYMMT-L 0.025 0.025 —0.230 0.277
STNR-ASYMMT-L 0.025 0.025 —0.230 0.277
STNR-ASYMMT-L —.367** —0.367 0.010 —0.568 —0.125
STNR-ASYMMT-L 0.177 0.177 —0.081 0.412
STNR-ASYMMT-R —.221* —0.221 0.050 —0.450 0.035
STNR-ASYMMT-R —.221* —0.221 0.050 —0.450 0.035
STNR-ASYMMT-R —0.098 —0.098 —0.343 0.160
STNR-ASYMMT-R -0.175 —0.175 —-0.411 0.083
STNR-ASYMMT-R —.250* —0.250 0.050 —0.474 0.004
STNR-ASYMMT-R 0.031 0.031 —0.225 0.283
STNR-ASYMMT-R 0.031 0.031 —0.225 0.283
STNR-ASYMMT-R —.367** —0.367 0.010 —0.568 —0.125
STNR-ASYMMT-R 0.184 0.184 —0.073 0.418
SPINAL GALLANT-AYMMT-L —.285* —0.285 0.050 —0.503 —0.033
SPINAL GALLANT-AYMMT-L —.285* —0.285 0.050 —0.503 —0.033
SPINAL GALLANT-AYMMT-L 0.098 0.098 —0.160 0.343
SPINAL GALLANT-AYMMT-L —0.114 —0.114 —0.358 0.144
SPINAL GALLANT-AYMMT-L —.262*% —0.262 0.050 —0.484 —0.009
SPINAL GALLANT-AYMMT-L 0.026 0.026 —0.229 0.278
SPINAL GALLANT-AYMMT-L 0.026 0.026 —0.229 0.278
SPINAL GALLANT-AYMMT-L —.301%** —0.301 0.010 —0.516 —0.051
SPINAL GALLANT-AYMMT-L .229% 0.229 0.050 —0.026 0.456
SPINAL GALLANT-AYMMT-R —.288* —0.288 0.050 —0.505 —0.037
SPINAL GALLANT-AYMMT-R —.288* —0.288 0.050 —0.505 —0.037
SPINAL GALLANT-AYMMT-R 0.094 0.094 —0.164 0.340
SPINAL GALLANT-AYMMT-R —0.128 —0.128 —0.370 0.130
SPINAL GALLANT-AYMMT-R —.280* —0.280 0.050 —0.498 —0.028
SPINAL GALLANT-AYMMT-R 0.033 0.033 —0.223 0.285
SPINAL GALLANT-AYMMT-R 0.033 0.033 —0.223 0.285
SPINAL GALLANT-AYMMT-R —.318** —0.318 0.010 —0.529 —0.070
SPINAL GALLANT-AYMMT-R .233* 0.233 0.050 —0.022 0.460
PALMER-ASYMMT-L —.257* —0.257 0.050 —0.480 —0.003
PALMER-ASYMMT-L —.257* —0.257 0.050 —0.480 —0.003
PALMER-ASYMMT-L 0.111 0.111 —0.147 0.355
PALMER-ASYMMT-L 0.018 0.018 —0.237 0.271
PALMER-ASYMMT-L —.257* —0.257 0.050 —0.480 —0.003
PALMER-ASYMMT-L 0.086 0.086 -0.172 0.333
PALMER-ASYMMT-L 0.086 0.086 —0.172 0.333
PALMER-ASYMMT-L —.306%* —0.306 0.010 —0.520 —0.056
PALMER-ASYMMT-L 0.205 0.205 —0.052 0.436
PALMER-ASYMMT-R —.279* —0.279 0.050 —0.498 —0.027
PALMER-ASYMMT-R —.279* —0.279 0.050 —0.498 —0.027
PALMER-ASYMMT-R 0.084 0.084 —0.174 0.331
PALMER-ASYMMT-R —0.018 —0.018 -0.271 0.237
PALMER-ASYMMT-R —.237* —0.237 0.050 —0.463 0.018
PALMER-ASYMMT-R 0.085 0.085 -0.173 0.332
PALMER-ASYMMT-R 0.085 0.085 -0.173 0.332
PALMER-ASYMMT-R —.302%* —0.302 0.010 —0.516 —0.052
PALMER-ASYMMT-R 0.184 0.184 —0.073 0.418
BABINSKI ASYMMT-L —.249* —0.249 0.050 —0.473 0.005
BABINSKI ASYMMT-L —.249* —0.249 0.050 —0.473 0.005
BABINSKI ASYMMT-L 0.041 0.041 —0.215 0.292
BABINSKI ASYMMT-L —0.126 —0.126 —0.368 0.132
BABINSKI ASYMMT-L —.255* —0.255 0.050 —0.478 —0.001
BABINSKI ASYMMT-L —0.039 —0.039 —0.290 0.217
BABINSKI ASYMMT-L —0.039 —0.039 —0.290 0.217
BABINSKI ASYMMT-L —.250* —0.250 0.050 —0.474 0.004
BABINSKI ASYMMT-L 0.187 0.187 —0.070 0.421
BABINSKI ASYMMT-R —.249* —0.249 0.050 —0.473 0.005
BABINSKI ASYMMT-R —.249* —0.249 0.050 —0.473 0.005
BABINSKI ASYMMT-R 0.105 0.105 —0.153 0.350
BABINSKI ASYMMT-R —0.184 —0.184 —0.418 0.073
BABINSKI ASYMMT-R —.255% —0.255 0.050 —0.478 —0.001
BABINSKI ASYMMT-R —0.040 —0.040 —0.291 0.216
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Table A4 (continued)

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
BABINSKI ASYMMT-R —0.040 —0.040 -0.291 0.216
BABINSKI ASYMMT-R —.364** —0.364 0.010 —0.566 —0.121
BABINSKI ASYMMT-R 0.177 0.177 —0.081 0.412
ROOTING-ASYMMT-L —0.081 —0.081 —0.328 0.177
ROOTING-ASYMMT-L —0.081 —0.081 —0.328 0.177
ROOTING-ASYMMT-L 0.049 0.049 —0.208 0.299
ROOTING-ASYMMT-L 0.032 0.032 —0.224 0.284
ROOTING-ASYMMT-L —0.066 —0.066 —0.315 0.191
ROOTING-ASYMMT-L 0.176 0.176 —0.082 0.412
ROOTING-ASYMMT-L 0.176 0.176 —0.082 0.412
ROOTING-ASYMMT-L —.365%* —0.365 0.010 —0.566 —0.122
ROOTING-ASYMMT-L .332%* 0.332 0.010 0.085 0.540
ROOTING-ASYMMT-R —0.079 —0.079 —0.326 0.179
ROOTING-ASYMMT-R —-0.079 —0.079 —0.326 0.179
ROOTING-ASYMMT-R 0.050 0.050 —0.207 0.300
ROOTING-ASYMMT-R 0.031 0.031 —0.225 0.283
ROOTING-ASYMMT-R —0.066 —0.066 —0.315 0.191
ROOTING-ASYMMT-R 0.176 0.176 —0.082 0.412
ROOTING-ASYMMT-R 0.176 0.176 —0.082 0.412
ROOTING-ASYMMT-R —.364** —0.364 0.010 —0.566 —0.121
ROOTING-ASYMMT-R .332%* 0.332 0.010 0.085 0.540
LABYRINT ASYMMT-L —0.128 —0.128 —0.370 0.130
LABYRINT ASYMMT-L —-0.128 —0.128 —0.370 0.130
LABYRINT ASYMMT-L —0.109 —0.109 —0.353 0.149
LABYRINT ASYMMT-L —0.151 —0.151 —0.390 0.107
LABYRINT ASYMMT-L —-0.197 —0.197 —0.429 0.060
LABYRINT ASYMMT-L 0.079 0.079 —0.179 0.326
LABYRINT ASYMMT-L 0.079 0.079 -0.179 0.326
LABYRINT ASYMMT-L —.303** —0.303 0.010 —0.517 —0.053
LABYRINT ASYMMT-L 0.187 0.187 —0.070 0.421
LABYRINT ASYMMT-R —0.129 —0.129 -0.371 0.129
LABYRINT ASYMMT-R -0.129 —0.129 —0.371 0.129
LABYRINT ASYMMT-R —0.109 —0.109 —0.353 0.149
LABYRINT ASYMMT-R —0.153 —0.153 —0.392 0.105
LABYRINT ASYMMT-R —0.200 —0.200 —0.432 0.057
LABYRINT ASYMMT-R 0.084 0.084 -0.174 0.331
LABYRINT ASYMMT-R 0.084 0.084 —0.174 0.331
LABYRINT ASYMMT-R —.303** —0.303 0.010 —0.517 —0.053
LABYRINT ASYMMT-R 0.187 0.187 —0.070 0.421
MORO- —0.150 —0.150 —0.389 0.108
ASYMMT-L
MORO- —0.150 —0.150 —0.389 0.108
ASYMMT-L
MORO- —0.069 —0.069 -0.317 0.188
ASYMMT-L
MORO- —0.147 —0.147 —0.387 0.111
ASYMMT-L
MORO- —0.054 —0.054 —0.304 0.203
ASYMMT-L
MORO- —0.004 —0.004 —0.258 0.250
ASYMMT-L
MORO- —0.004 —0.004 —0.258 0.250
ASYMMT-L
MORO- —.357** —0.357 0.010 —0.560 —-0.113
ASYMMT-L
MORO- 0.110 0.110 —0.148 0.354
ASYMMT-L
MORO- —-0.115 —0.115 —0.358 0.143
ASYMMT-R
MORO- —0.115 —0.115 —0.358 0.143
ASYMMT-R
MORO- —0.071 —0.071 —0.319 0.186
ASYMMT-R
MORO- —0.185 —0.185 —0.419 0.072
ASYMMT-R
MORO- —0.002 —0.002 —0.256 0.252
ASYMMT-R
MORO- 0.064 0.064 —0.193 0.313
ASYMMT-R

(continued on next page)
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Table A4 (continued)

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)

MORO- 0.064 0.064 —0.193 0.313
ASYMMT-R

MORO- —.321%* —0.321 0.010 —0.532 —0.073
ASYMMT-R

MORO- 0.172 0.172 —0.086 0.408
ASYMMT-R

ATNR- —.339%* —0.339 0.010 —0.546 —0.093
SYMMT-L

ATNR- —.339%* —0.339 0.010 —0.546 —0.093
SYMMT-L

ATNR- —.217* -0.217 0.050 —0.446 0.039
SYMMT-L

ATNR- —0.196 —0.196 —0.429 0.061
SYMMT-L

ATNR- —.415%* —0.415 0.010 —0.605 —0.180
SYMMT-L

ATNR- —.387%** —0.387 0.010 —0.584 —0.148
SYMMT-L

ATNR- —.387** —0.387 0.010 —0.584 —0.148
SYMMT-L

ATNR- —0.140 —0.140 —0.380 0.118
SYMMT-L

ATNR- —0.151 —0.151 —0.390 0.107
SYMMT-L

ATNR- 0.004 0.004 —0.250 0.258
SYMMT-R

ATNR- 0.004 0.004 —0.250 0.258
SYMMT-R

ATNR- 0.048 0.048 —0.208 0.298
SYMMT-R

ATNR- 0.066 0.066 -0.191 0.315
SYMMT-R

ATNR- 0.000 0.000 —0.254 0.254
SYMMT-R

ATNR- 0.001 0.001 —0.253 0.255
SYMMT-R

ATNR- 0.001 0.001 —0.253 0.255
SYMMT-R

ATNR- 0.144 0.144 -0.114 0.384
SYMMT-R

ATNR- 0.125 0.125 -0.133 0.367
SYMMT-R

ATNR- —.345%* —0.345 0.010 —0.551 —0.100
SYMMT-R

ATNR- —.345%* —0.345 0.010 —0.551 —0.100
SYMMT-R

ATNR- -0.212 —-0.212 —0.442 0.044
SYMMT-R

ATNR- —0.187 —0.187 —0.421 0.070
SYMMT-R

ATNR- —.422%* —0.422 0.010 —0.611 —0.188
SYMMT-R

ATNR- —.392%* —0.392 0.010 —0.587 —0.153
SYMMT-R

ATNR- —.392%* —0.392 0.010 —0.587 —0.153
SYMMT-R

ATNR- —-0.130 —0.130 —0.372 0.128
SYMMT-R

ATNR- —0.169 —0.169 —0.406 0.089
SYMMT-R

STNR- —.505%* —0.505 0.010 —0.673 —0.288
SYMMET-L

STNR- —.505%* —0.505 0.010 —0.673 —0.288
SYMMET-L

STNR- —0.109 —0.109 —0.353 0.149
SYMMET-L

STNR- —.270* -0.270 0.050 —0.490 —0.017
SYMMET-L

STNR- —.527** —0.527 0.010 —0.689 —0.315
SYMMET-L

(continued on next page)
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Table A4 (continued)

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)

STNR- —.393** —0.393 0.010 —0.588 —0.154
SYMMET-L

STNR- —.393** —0.393 0.010 —0.588 —0.154
SYMMET-L

STNR- —.276* —0.276 0.050 —0.495 —0.024
SYMMET-L

STNR- —-0.122 —0.122 —0.365 0.136
SYMMET-L

STNR- —.513** —0.513 0.010 —0.679 —0.298
SYMMET-R

STNR- —.513** —0.513 0.010 —0.679 —0.298
SYMMET-R

STNR- —0.100 —0.100 —0.345 0.158
SYMMET-R

STNR- —.258* —0.258 0.050 —0.480 —0.004
SYMMET-R

STNR- —.535%* —0.535 0.010 —0.695 —0.325
SYMMET-R

STNR- —.398** —0.398 0.010 —0.592 —0.160
SYMMET-R

STNR- —.398** —0.398 0.010 —0.592 —0.160
SYMMET-R

STNR- —.267* —0.267 0.050 —0.488 —0.014
SYMMET-R

STNR- —0.142 —0.142 —0.382 0.116
SYMMET-R

SPINAL —.312%* —0.312 0.010 —0.524 —0.063
GALLANT-SYMMET-L

SPINAL —.312%* —0.312 0.010 —0.524 —0.063
GALLANT-SYMMET-L

SPINAL —0.184 —0.184 —0.418 0.073
GALLANT-SYMMET-L

SPINAL —.294* —0.294 0.050 —0.510 —0.043
GALLANT-SYMMET-L

SPINAL —.420%* —0.420 0.010 —0.609 —0.186
GALLANT-SYMMET-L

SPINAL —.386** —0.386 0.010 —0.583 —0.146
GALLANT-SYMMET-L

SPINAL —.386%* —0.386 0.010 —0.583 —0.146
GALLANT-SYMMET-L

SPINAL —.226* —0.226 0.050 —0.454 0.030
GALLANT-SYMMET-L

SPINAL —0.184 —0.184 —0.418 0.073
GALLANT-SYMMET-L

SPINAL —.312%* —0.312 0.010 —0.524 —0.063
GALLANT-SYMMET-R

SPINAL —.312%* —0.312 0.010 —0.524 —0.063
GALLANT-SYMMET-R

SPINAL —0.184 —0.184 —0.418 0.073
GALLANT-SYMMET-R

SPINAL —.294* —0.294 0.050 —0.510 —0.043
GALLANT-SYMMET-R

SPINAL —.420%* —0.420 0.010 —0.609 —0.186
GALLANT-SYMMET-R

SPINAL —.386%* —0.386 0.010 —0.583 —0.146
GALLANT-SYMMET-R

SPINAL —.386** —0.386 0.010 —0.583 —0.146
GALLANT-SYMMET-R

SPINAL —.226* —0.226 0.050 —0.454 0.030
GALLANT-SYMMET-R

SPINAL —0.184 —0.184 —0.418 0.073
GALLANT-SYMMET-R

PALMER-SYMMET —.402%* —0.402 0.010 —0.595 —0.165

PALMER-SYMMET —.402%* —0.402 0.010 —0.595 —0.165

PALMER-SYMMET —0.183 —0.183 —0.418 0.074

PALMER-SYMMET —0.276 0.050 —0.495 —0.024

PALMER-SYMMET —0.466 0.010 —0.644 —0.241

PALMER-SYMMET —0.492 0.010 —0.663 —0.272

PALMER-SYMMET —0.492 0.010 —0.663 —0.272

PALMER-SYMMET -0.173 —0.409 0.085

(continued on next page)
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Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
PALMER-SYMMET —.252* —0.252 0.050 —0.476 0.002
BABINSKI SYMMET —.332%* —0.332 0.010 —0.540 —0.085
BABINSKI SYMMET —.332%* —0.332 0.010 —0.540 —0.085
BABINSKI SYMMET —0.098 —0.098 —0.343 0.160
BABINSKI SYMMET -0.174 —0.174 —0.410 0.084
BABINSKI SYMMET —.422%* —0.422 0.010 —0.611 —0.188
BABINSKI SYMMET —.460** —0.460 0.010 —0.639 —0.233
BABINSKI SYMMET —.460** —0.460 0.010 —0.639 —0.233
BABINSKI SYMMET —0.098 —0.098 —0.343 0.160
BABINSKI SYMMET —.270* —0.270 0.050 —0.490 —0.017
ROOTING SYMMET —.539** —0.539 0.010 —0.697 —0.330
ROOTING SYMMET —.539%* —0.539 0.010 —0.697 —0.330
ROOTING SYMMET —0.116 —0.116 —0.359 0.142
ROOTING SYMMET —.302** —0.302 0.010 —0.516 —0.052
ROOTING SYMMET —.588** —0.588 0.010 —0.733 —0.393
ROOTING SYMMET —.502** —0.502 0.010 —0.670 —0.284
ROOTING SYMMET —.502%* —0.502 0.010 —0.670 —0.284
ROOTING SYMMET —0.195 —0.195 —0.428 0.062
ROOTING SYMMET —.257* —0.257 0.050 —0.480 —0.003
LABYRINT SYMMET-L —.265* —0.265 0.050 —0.486 —0.012
LABYRINT SYMMET-L —.265* —0.265 0.050 —0.486 —0.012
LABYRINT SYMMET-L —0.064 —0.064 —0.313 0.193
LABYRINT SYMMET-L —0.134 —0.134 —0.375 0.124
LABYRINT SYMMET-L —.258* —0.258 0.050 —0.480 —0.004
LABYRINT SYMMET-L —.252% —0.252 0.050 —0.476 0.002
LABYRINT SYMMET-L —.252% —0.252 0.050 —0.476 0.002
LABYRINT SYMMET-L —0.198 —0.198 —0.430 0.059
LABYRINT SYMMET-L —-0.116 —0.116 —0.359 0.142
LABYRINT SYMMET-R —.263* —0.263 0.050 —0.485 —0.010
LABYRINT SYMMET-R —.263* —0.263 0.050 —0.485 —0.010
LABYRINT SYMMET-R —0.064 —0.064 —0.313 0.193
LABYRINT SYMMET-R —0.136 —0.136 -0.377 0.122
LABYRINT SYMMET-R —.257* —0.257 0.050 —0.480 —0.003
LABYRINT SYMMET-R —.257* —0.257 0.050 —0.480 —0.003
LABYRINT SYMMET-R —.257* —0.257 0.050 —0.480 —0.003
LABYRINT SYMMET-R —0.193 —0.193 —0.426 0.064
LABYRINT SYMMET-R —-0.122 —0.122 —0.365 0.136
MORO-SYMMET —0.196 —0.196 —0.429 0.061
MORO-SYMMET —0.196 —0.196 —0.429 0.061
MORO-SYMMET —0.044 —0.044 —0.295 0.212
MORO-SYMMET -0.137 -0.137 —0.378 0.121
MORO-SYMMET —.339%* —0.339 0.010 —0.546 —0.093
MORO-SYMMET —.342%* —0.342 0.010 —0.548 —0.096
MORO-SYMMET —.342%* —0.342 0.010 —0.548 —0.096
MORO-SYMMET —0.006 —0.006 —0.260 0.248
MORO-SYMMET —.298* —0.298 0.050 —0.513 —0.048

Table A5

Correlation coefficients between retained primitive reflex (RPR) scores and individual WISC/WAIS subtest measures following reflex-integration
intervention in individuals with autism spectrum disorder (n = 60). The Variable column lists each primitive reflex assessed. The Measure column
lists the corresponding WISC/WAIS cognitive subtests examined. The r column presents Pearson correlation coefficients indicating the strength and
direction of associations observed after intervention, where positive values denote higher reflex retention associated with higher test scores, and
negative values denote inverse relationships. The p column reports significance levels derived from the original asterisk coding (p < 0.05, p < 0.01,
p < 0.001). The 95 % CI (Lower/Upper) columns provide Fisher’s r-to-z transformed confidence limits for each correlation

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
ATNR-ASYMMT-L 1Q WISC/
WAIS
ATNR-ASYMMT-L 1Q WISC/ —-0.300 0.050 —0.515 —0.050
WAIS
ATNR-ASYMMT-L PIC COMP —0.021 —0.273 0.234
ATNR-ASYMMT-L BLOCK DESIGN —0.186 —0.420 0.071
ATNR-ASYMMT-L MATRIX REASON —0.341 0.010 —0.548 —0.095
ATNR-ASYMMT-L INFO —0.080 —0.327 0.178
ATNR-ASYMMT-L SIMILAR —0.330 0.010 —0.539 —0.083
ATNR-ASYMMT-L DIGIT SPAN —-0.330 0.010 —0.539 —0.083
ATNR-ASYMMT-L DIGIT SPAN 0.245 0.050 —0.010 0.470
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Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
ATNR-ASYMMT-R 1Q WISC/
WAIS
ATNR-ASYMMT-R 1Q WISC/ —0.278 0.050 —0.497 —0.026
WAIS
ATNR-ASYMMT-R PIC COMP 0.019 —0.236 0.272
ATNR-ASYMMT-R BLOCK DESIGN —0.233 0.050 —0.460 0.022
ATNR-ASYMMT-R MATRIX REASON —0.343 0.010 —0.549 —0.098
ATNR-ASYMMT-R INFO —0.031 —0.283 0.225
ATNR-ASYMMT-R SIMILAR —0.326 0.010 —0.536 —0.079
ATNR-ASYMMT-R DIGIT SPAN —0.326 0.010 —0.536 —0.079
ATNR-ASYMMT-R DIGIT SPAN 0.254 0.050 0.000 0.477
STNR-ASYMMT-L 1Q WISC/
WAIS
STNR-ASYMMT-L 1Q WISC/ —0.266 0.050 —0.487 —0.013
WAIS
STNR-ASYMMT-L PIC COMP —-0.112 —0.356 0.146
STNR-ASYMMT-L BLOCK DESIGN —0.181 —0.416 0.076
STNR-ASYMMT-L MATRIX REASON —0.209 —0.440 0.047
STNR-ASYMMT-L INFO —0.067 —0.316 0.190
STNR-ASYMMT-L SIMILAR —0.250 0.050 —0.474 0.004
STNR-ASYMMT-L DIGIT SPAN —0.250 0.050 —0.474 0.004
STNR-ASYMMT-L DIGIT SPAN 0.224 0.050 —0.032 0.452
STNR-ASYMMT-R
STNR-ASYMMT-R 1Q WISC/
WAIS
STNR-ASYMMT-R 1Q WISC/ —0.267 0.050 —0.488 —0.014
WAIS
STNR-ASYMMT-R PIC COMP —0.081 —0.328 0.177
STNR-ASYMMT-R BLOCK DESIGN —0.240 0.050 —0.466 0.015
STNR-ASYMMT-R MATRIX REASON —0.208 —0.439 0.048
STNR-ASYMMT-R INFO —0.001 —0.255 0.253
STNR-ASYMMT-R SIMILAR —0.261 0.050 —0.483 —0.008
STNR-ASYMMT-R DIGIT SPAN —0.261 0.050 —0.483 —0.008
STNR-ASYMMT-R DIGIT SPAN 0.279 0.050 0.027 0.498
SPINAL GALLANT-AYMMT-L 1Q WISC/
WAIS
SPINAL GALLANT-AYMMT-L 1Q WISC/ —0.279 0.050 —0.498 —0.027
WAIS
SPINAL GALLANT-AYMMT-L PIC COMP 0.114 —0.144 0.358
SPINAL GALLANT-AYMMT-L BLOCK DESIGN —0.059 —0.308 0.198
SPINAL GALLANT-AYMMT-L MATRIX REASON —0.250 0.050 —0.474 0.004
SPINAL GALLANT-AYMMT-L INFO —0.006 —0.260 0.248
SPINAL GALLANT-AYMMT-L SIMILAR —0.286 0.050 —0.503 —0.035
SPINAL GALLANT-AYMMT-L DIGIT SPAN —0.286 0.050 —0.503 —0.035
SPINAL GALLANT-AYMMT-L DIGIT SPAN 0.297 0.050 0.047 0.512
SPINAL GALLANT-AYMMT-R 1Q WISC/
WAIS
SPINAL GALLANT-AYMMT-R 1Q WISC/ -0.273 0.050 —0.493 —0.020
WAIS
SPINAL GALLANT-AYMMT-R PIC COMP 0.142 —0.116 0.382
SPINAL GALLANT-AYMMT-R BLOCK DESIGN —0.089 —0.335 0.169
SPINAL GALLANT-AYMMT-R MATRIX REASON —0.254 0.050 —0.477 —0.000
SPINAL GALLANT-AYMMT-R INFO 0.042 —0.214 0.293
SPINAL GALLANT-AYMMT-R SIMILAR -0.279 0.050 —0.498 —0.027
SPINAL GALLANT-AYMMT-R DIGIT SPAN -0.279 0.050 —0.498 —0.027
SPINAL GALLANT-AYMMT-R DIGIT SPAN 0.324 0.010 0.076 0.534
PALMER-ASYMMT-L 1Q WISC/
WAIS
PALMER-ASYMMT-L 1Q WISC/ —0.272 0.050 —0.492 —0.019
WAIS
PALMER-ASYMMT-L PIC COMP —0.007 —0.260 0.247
PALMER-ASYMMT-L BLOCK DESIGN —0.053 —0.303 0.204
PALMER-ASYMMT-L MATRIX REASON —0.274 0.050 —0.494 —0.022
PALMER-ASYMMT-L INFO 0.031 —0.225 0.283
PALMER-ASYMMT-L SIMILAR —0.286 0.050 —0.503 —0.035
PALMER-ASYMMT-L DIGIT SPAN —0.286 0.050 —0.503 —0.035
PALMER-ASYMMT-L DIGIT SPAN 0.220 0.050 —0.036 0.449
PALMER-ASYMMT-R 1Q WISC/
WAIS
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Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
PALMER-ASYMMT-R 1Q WISC/ —0.226 0.050 —0.454 0.030
WAIS
PALMER-ASYMMT-R PIC COMP 0.019 —0.236 0.272
PALMER-ASYMMT-R BLOCK DESIGN —0.047 —0.297 0.209
PALMER-ASYMMT-R MATRIX REASON —0.245 0.050 —0.470 0.010
PALMER-ASYMMT-R INFO 0.098 —0.160 0.343
PALMER-ASYMMT-R SIMILAR —0.293 0.050 —0.509 —0.042
PALMER-ASYMMT-R DIGIT SPAN —0.293 0.050 —0.509 —0.042
PALMER-ASYMMT-R DIGIT SPAN 0.242 0.050 —0.013 0.467
BABINSKI ASYMMT-L 1Q WISC/
WAIS
BABINSKI ASYMMT-L 1Q WISC/ —0.293 0.050 —0.509 —0.042
WAIS
BABINSKI ASYMMT-L PIC COMP —0.041 —0.292 0.215
BABINSKI ASYMMT-L BLOCK DESIGN —0.155 —0.393 0.103
BABINSKI ASYMMT-L MATRIX REASON —0.306 0.010 —0.520 —0.056
BABINSKI ASYMMT-L INFO —0.089 —0.335 0.169
BABINSKI ASYMMT-L SIMILAR —0.259 0.050 —0.481 —0.005
BABINSKI ASYMMT-L DIGIT SPAN —0.259 0.050 —0.481 —0.005
BABINSKI ASYMMT-L DIGIT SPAN 0.164 —0.094 0.401
BABINSKI ASYMMT-R 1Q WISC/
WAIS
BABINSKI ASYMMT-R 1Q WISC/ —0.261 0.050 —0.483 —0.008
WAIS
BABINSKI ASYMMT-R PIC COMP 0.000 —0.254 0.254
BABINSKI ASYMMT-R BLOCK DESIGN —0.205 —0.436 0.052
BABINSKI ASYMMT-R MATRIX REASON —0.306 0.010 —0.520 —0.056
BABINSKI ASYMMT-R INFO —0.015 —0.268 0.240
BABINSKI ASYMMT-R SIMILAR —0.336 0.010 —0.544 —0.090
BABINSKI ASYMMT-R DIGIT SPAN —0.336 0.010 —0.544 —0.090
BABINSKI ASYMMT-R DIGIT SPAN 0.204 —0.053 0.435
ROOTING-ASYMMT-L 1Q WISC/
WAIS
ROOTING-ASYMMT-L 1Q WISC/ —0.309 0.010 —0.522 —0.060
WAIS
ROOTING-ASYMMT-L PIC COMP —0.161 —0.399 0.097
ROOTING-ASYMMT-L BLOCK DESIGN —0.158 —0.396 0.100
ROOTING-ASYMMT-L MATRIX REASON -0.211 —0.441 0.045
ROOTING-ASYMMT-L INFO 0.037 —0.219 0.288
ROOTING-ASYMMT-L SIMILAR —0.326 0.010 —0.536 —0.079
ROOTING-ASYMMT-L DIGIT SPAN —0.326 0.010 —0.536 —0.079
ROOTING-ASYMMT-L DIGIT SPAN 0.308 0.010 0.059 0.521
ROOTING-ASYMMT-R 1Q WISC/
WAIS
ROOTING-ASYMMT-R 1Q WISC/ —0.309 0.010 —0.522 —0.060
WAIS
ROOTING-ASYMMT-R PIC COMP -0.159 —0.397 0.099
ROOTING-ASYMMT-R BLOCK DESIGN —0.155 —0.393 0.103
ROOTING-ASYMMT-R MATRIX REASON —-0.212 —0.442 0.044
ROOTING-ASYMMT-R INFO 0.038 —0.218 0.289
ROOTING-ASYMMT-R SIMILAR —0.328 0.010 —0.537 —0.081
ROOTING-ASYMMT-R DIGIT SPAN —0.328 0.010 —0.537 —0.081
ROOTING-ASYMMT-R DIGIT SPAN 0.307 0.010 0.058 0.520
LABYRINT ASYMMT-L 1Q WISC/
WAIS
LABYRINT ASYMMT-L 1Q WISC/ —0.123 —0.366 0.135
WAIS
LABYRINT ASYMMT-L PIC COMP —0.074 —0.322 0.183
LABYRINT ASYMMT-L BLOCK DESIGN —0.035 —0.286 0.221
LABYRINT ASYMMT-L MATRIX REASON —0.126 —0.368 0.132
LABYRINT ASYMMT-L INFO —0.008 —0.261 0.246
LABYRINT ASYMMT-L SIMILAR —0.187 —0.421 0.070
LABYRINT ASYMMT-L DIGIT SPAN —-0.187 —0.421 0.070
LABYRINT ASYMMT-L DIGIT SPAN 0.231 0.050 —0.024 0.458
LABYRINT ASYMMT-R 1Q WISC/
WAIS
LABYRINT ASYMMT-R 1Q WISC/ —0.108 —0.352 0.150
WAIS
LABYRINT ASYMMT-R PIC COMP —0.027 —0.279 0.228
LABYRINT ASYMMT-R BLOCK DESIGN —0.090 —0.336 0.168
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Table A5 (continued)

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)

LABYRINT ASYMMT-R MATRIX REASON —0.118 —0.361 0.140

LABYRINT ASYMMT-R INFO 0.088 —0.170 0.334

LABYRINT ASYMMT-R SIMILAR —0.196 —0.429 0.061

LABYRINT ASYMMT-R DIGIT SPAN —0.196 —0.429 0.061

LABYRINT ASYMMT-R DIGIT SPAN 0.314 0.010 0.065 0.526

MORO- 1Q WISC/
ASYMMT-L WAIS

MORO- 1Q WISC/ —0.180 —0.415 0.077
ASYMMT-L WAIS

MORO- PIC COMP —0.266 0.050 —0.487 —0.013
ASYMMT-L

MORO- BLOCK DESIGN —0.290 0.050 —0.507 —0.039
ASYMMT-L

MORO- MATRIX REASON -0.117 —0.360 0.141
ASYMMT-L

MORO- INFO —0.039 —0.290 0.217
ASYMMT-L

MORO- SIMILAR —0.229 0.050 —0.456 0.026
ASYMMT-L

MORO-ASYMMT-L DIGIT SPAN —0.229 0.050 —0.456 0.026

MORO- DIGIT SPAN 0.166 —0.092 0.403
ASYMMT-L

MORO- 1Q WISC/
ASYMMT-R WAIS

MORO- 1Q WISC/ -0.197 —0.429 0.060
ASYMMT-R WAIS

MORO- PIC COMP —-0.199 —0.431 0.058
ASYMMT-R

MORO- BLOCK DESIGN —0.235 0.050 —0.461 0.020
ASYMMT-R

MORO- MATRIX REASON —0.109 —0.353 0.149
ASYMMT-R

MORO- INFO —0.059 —0.308 0.198
ASYMMT-R

MORO-ASYMMT-R SIMILAR -0.171 —0.407 0.087

MORO- DIGIT SPAN -0.171 —0.407 0.087
ASYMMT-R

MORO- DIGIT SPAN 0.256 0.050 0.002 0.479
ASYMMT-R

ATNR- 1Q WISC/
SYMMT-L WAIS

ATNR- 1Q WISC/ —0.314 0.010 —0.526 —0.065
SYMMT-L WAIS

ATNR- PIC COMP 0.037 -0.219 0.288
SYMMT-L

ATNR- BLOCK DESIGN —0.203 —0.435 0.054
SYMMT-L

ATNR- MATRIX REASON —0.346 0.010 —0.551 —0.101
SYMMT-L

ATNR- INFO —0.402 0.010 —0.595 —0.165
SYMMT-L

ATNR- SIMILAR —0.241 0.050 —0.466 0.014
SYMMT-L

ATNR- DIGIT SPAN —0.241 0.050 —0.466 0.014
SYMMT-L

ATNR- DIGIT SPAN —0.146 —0.386 0.112
SYMMT-L

ATNR-
SYMMT-R

ATNR- 1Q WISC/
SYMMT-R WAIS

ATNR- 1Q WISC/ —0.314 0.010 —0.526 —0.065
SYMMT-R WAIS

ATNR- PIC COMP 0.037 -0.219 0.288
SYMMT-R

ATNR- BLOCK DESIGN —0.203 —0.435 0.054
SYMMT-R

ATNR- MATRIX REASON —0.346 0.010 —0.551 —0.101
SYMMT-R
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Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)

ATNR- INFO —0.402 0.010 —0.595 —0.165
SYMMT-R

ATNR- SIMILAR —0.241 0.050 —0.466 0.014
SYMMT-R

ATNR- DIGIT SPAN —0.241 0.050 —0.466 0.014
SYMMT-R

ATNR- DIGIT SPAN —0.146 —0.386 0.112
SYMMT-R

STNR- 1Q WISC/
SYMMET-L WAIS

STNR- 1Q WISC/ —0.461 0.010 —0.640 —0.235
SYMMET-L WAIS

STNR- PIC COMP 0.042 —0.214 0.293
SYMMET-L

STNR- BLOCK DESIGN —0.266 0.050 —0.487 —0.013
SYMMET-L

STNR- MATRIX REASON —0.550 0.010 —0.705 —0.344
SYMMET-L

STNR- INFO —0.381 0.010 —0.579 —0.141
SYMMET-L

STNR- SIMILAR —0.428 0.010 —0.615 —0.195
SYMMET-L

STNR- DIGIT SPAN —0.428 0.010 —0.615 —0.195
SYMMET-L

STNR- DIGIT SPAN —0.071 —0.319 0.186
SYMMET-L

STNR- 1Q WISC/
SYMMET-R WAIS

STNR- 1Q WISC/ —0.454 0.010 —0.635 —0.226
SYMMET-R WAIS

STNR- PIC COMP 0.056 —0.201 0.306
SYMMET-R

STNR- BLOCK DESIGN —0.254 0.050 —0.477 —0.000
SYMMET-R

STNR- MATRIX REASON —0.548 0.010 —0.704 —0.342
SYMMET-R

STNR- INFO —0.376 0.010 —0.575 —0.135
SYMMET-R

STNR- SIMILAR —0.417 0.010 —0.607 —0.182
SYMMET-R

STNR- DIGIT SPAN —0.417 0.010 —0.607 —0.182
SYMMET-R

STNR- DIGIT SPAN —0.084 —0.331 0.174
SYMMET-R

SPINAL 1Q WISC/
GALLANT-SYMMET-L WAIS

SPINAL 1Q WISC/ —0.304 0.010 —0.518 —0.054
GALLANT-SYMMET-L WAIS

SPINAL PIC COMP —0.049 —0.299 0.208
GALLANT-SYMMET-L

SPINAL BLOCK DESIGN —0.302 0.010 —0.516 —0.052
GALLANT-SYMMET-L

SPINAL MATRIX REASON —0.408 0.010 —0.600 —0.172
GALLANT-SYMMET-L

SPINAL INFO —0.443 0.010 —0.626 —0.213
GALLANT-SYMMET-L

SPINAL SIMILAR —-0.274 0.050 —0.494 —0.022
GALLANT-SYMMET-L

SPINAL DIGIT SPAN —0.274 0.050 —0.494 —0.022
GALLANT-SYMMET-L

SPINAL DIGIT SPAN -0.211 —0.441 0.045
GALLANT-SYMMET-L

SPINALGALLANT-SYMMET-R 1Q WISC/

WAIS
SPINALGALLANT-SYMMET-R 1Q WISC/ —0.304 0.010 —0.518 —0.054
WAIS

SPINALGALLANT-SYMMET-R PIC COMP —0.049 —0.299 0.208

SPINAL GALLANT-SYMMET-R BLOCK DESIGN —0.302 0.010 —0.516 —0.052

SPINAL GALLANT-SYMMET-R MATRIX REASON —0.408 0.010 —0.600 -0.172

SPINAL GALLANT-SYMMET-R INFO —0.443 0.010 —0.626 —0.213
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Table A5 (continued)

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)
SPINAL GALLANT-SYMMET-R SIMILAR —0.274 0.050 —0.494 —0.022
SPINAL GALLANT-SYMMET-R DIGIT SPAN —0.274 0.050 —0.494 —0.022
SPINAL GALLANT-SYMMET-R DIGIT SPAN —-0.211 —0.441 0.045
PALMER-SYMMET 1Q WISC/
WAIS
PALMER-SYMMET 1Q WISC/ —0.329 0.010 —0.538 —0.082
WAIS
PALMER-SYMMET PIC COMP 0.063 —0.194 0.312
PALMER-SYMMET BLOCK DESIGN —0.262 0.050 —0.484 —0.009
PALMER-SYMMET MATRIX REASON —-0.397 0.010 —0.591 —0.159
PALMER-SYMMET INFO —0.484 0.010 —0.657 —0.262
PALMER-SYMMET SIMILAR —0.243 0.050 —0.468 0.012
PALMER-SYMMET DIGIT SPAN —0.243 0.050 —0.468 0.012
PALMER-SYMMET DIGIT SPAN —0.226 0.050 —0.454 0.030
BABINSKI SYMMET 1Q WISC/
WAIS
BABINSKI SYMMET 1Q WISC/ —0.302 0.050 —0.516 —0.052
WAIS
BABINSKI SYMMET PIC COMP 0.102 —0.156 0.347
BABINSKI SYMMET BLOCK DESIGN —0.195 —0.428 0.062
BABINSKI SYMMET MATRIX REASON —0.363 0.010 —0.565 —0.120
BABINSKI SYMMET INFO —0.474 0.010 —0.650 —0.250
BABINSKI SYMMET SIMILAR —-0.213 —0.443 0.043
BABINSKI SYMMET DIGIT SPAN -0.213 —0.443 0.043
BABINSKI SYMMET DIGIT SPAN —0.257 0.050 —0.480 —0.003
ROOTING SYMMET 1Q WISC/
WAIS
ROOTING SYMMET 1Q WISC/ —0.388 0.010 —0.584 —0.149
WAIS
ROOTING SYMMET PIC COMP 0.139 —0.119 0.380
ROOTING SYMMET BLOCK DESIGN —0.234 0.050 —0.461 0.021
ROOTING SYMMET MATRIX REASON —0.485 0.010 —0.658 —0.264
ROOTING SYMMET INFO —0.471 0.010 —0.647 —0.247
ROOTING SYMMET SIMILAR —0.309 0.010 —0.522 —0.060
ROOTING SYMMET DIGIT SPAN —0.309 0.010 —0.522 —0.060
ROOTING SYMMET DIGIT SPAN —0.220 0.050 —0.449 0.036
LABYRINT SYMMET-L 1Q WISC/
WAIS
LABYRINT SYMMET-L 1Q WISC/ —0.228 0.050 —0.456 0.028
WAIS
LABYRINT SYMMET-L PIC COMP 0.044 —0.212 0.295
LABYRINT SYMMET-L BLOCK DESIGN —-0.126 —0.368 0.132
LABYRINT SYMMET-L MATRIX REASON —0.164 —0.401 0.094
LABYRINT SYMMET-L INFO —0.280 0.050 —0.498 —0.028
LABYRINT SYMMET-L SIMILAR —0.209 —0.440 0.047
LABYRINT SYMMET-L DIGIT SPAN —0.209 —0.440 0.047
LABYRINT SYMMET-L DIGIT SPAN —0.105 —0.350 0.153
LABYRINT SYMMET-R 1Q WISC/
WAIS
LABYRINT SYMMET-R 1Q WISC/ —0.226 0.050 —0.454 0.030
WAIS
LABYRINT SYMMET-R PIC COMP 0.047 —0.209 0.297
LABYRINT SYMMET-R BLOCK DESIGN —-0.123 —0.366 0.135
LABYRINT SYMMET-R MATRIX REASON —-0.163 —0.400 0.095
LABYRINT SYMMET-R INFO —0.283 0.050 —0.501 —0.031
LABYRINT SYMMET-R SIMILAR —0.209 —0.440 0.047
LABYRINT SYMMET-R DIGIT SPAN —0.209 —0.440 0.047
LABYRINT SYMMET-R DIGIT SPAN —0.109 —0.353 0.149
MORO- 1Q WISC/
SYMMET WAIS
MORO- 1Q WISC/ -0.187 —0.421 0.070
SYMMET WAIS
MORO- PIC COMP —0.043 —0.294 0.213
SYMMET
MORO- BLOCK DESIGN —0.122 —0.365 0.136
SYMMET
MORO- MATRIX REASON —0.235 0.050 —0.461 0.020
SYMMET
MORO- INFO —0.446 0.010 —0.629 -0.217
SYMMET
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Table A5 (continued)

Variable Measure r P 95 % CI (Lower) 95 % CI (Upper)

MORO- SIMILAR —0.082 —0.329 0.176
SYMMET

MORO- DIGIT SPAN —0.082 —0.329 0.176
SYMMET

MORO- DIGIT SPAN —0.348 0.010 —0.553 —0.103
SYMMET

Data availability

Raw data is available at website indicated in the ms.
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